

January 12, 2024

John Cable Triangle 17855 Elk Prairie Drive P.O. Box 1026 Rolla, MO 65402

TEL: (573) 364-1864 FAX: (573) 364-4782

RE: RPS-Wyman Elementary

TNI TNI TNI

Illinois 100226 Kansas E-10374 Louisiana 05002 Louisiana 05003 Oklahoma 9978

WorkOrder: 23122012

Dear John Cable:

TEKLAB, INC received 40 samples on 12/27/2023 2:30:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Marin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012
Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	5
Accreditations	6
Laboratory Results	7
Quality Control Results	8
Receiving Check List	11
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- NC Data is not acceptable for compliance purposes
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Definitions

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012 Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

Qualifiers

- Unknown hydrocarbon

RL shown is a Client Requested Quantitation Limit

H - Holding times exceeded

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside recovery limits

X - Value exceeds Maximum Contaminant Level

B - Analyte detected in associated Method Blank

E - Value above quantitation range

I - Associated internal standard was outside method criteria

M - Manual Integration used to determine area response

R - RPD outside accepted recovery limits

T - TIC(Tentatively identified compound)

Client: Triangle

Case Narrative

http://www.teklabinc.com/

Work Order: 23122012

Report Date: 12-Jan-24

Cooler Receipt Temp: NA °C

Client Project: RPS-Wyman Elementary

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2025	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2024	Collinsville
Louisiana	LDEQ	05002	NELAP	6/30/2024	Collinsville
Louisiana	LDEQ	05003	NELAP	6/30/2024	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2024	Collinsville
Arkansas	ADEQ	88-0966		3/14/2024	Collinsville
Illinois	IDPH	17584		5/31/2025	Collinsville
Iowa	IDNR	430		6/1/2024	Collinsville
Kentucky	UST	0073		1/31/2024	Collinsville
Missouri	MDNR	00930		5/31/2023	Collinsville
Missouri	MDNR	930		1/31/2025	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012 Report Date: 12-Jan-24

Client Project: RPS-Wyman Elementary

Matrix: DRINKING WATER

	Client Sample ID	Certification	Qual R	L Result	Units	DF	Date Analyzed	Date Collected
-	200.8 R5.4, META						y	
Lead	200.6 KJ.4, WIETA	L3 B1 ICFWI3 (IOIAL)					
23122012-001A	61-A	NELAP	0.00	0 < 0.0010	mg/L	1	01/10/2024 10:44	12/22/2023 12:00
23122012-001A	_	NELAP	0.00		mg/L	1	01/10/2024 10:48	12/22/2023 12:00
23122012-002A		NELAP	0.00		mg/L	1	01/10/2024 10:40	12/22/2023 12:00
23122012-003A		NELAP	0.00		mg/L	1	01/10/2024 10:52	12/22/2023 12:00
23122012-004A		NELAP	0.00		mg/L	1	01/10/2024 10:56	12/22/2023 12:00
23122012-006A		NELAP	0.00		mg/L	1	01/10/2024 10:30	12/22/2023 12:00
23122012-000A		NELAP	0.00		mg/L	1	01/10/2024 11:30	12/22/2023 12:00
23122012-008A		NELAP	0.00		mg/L	1	01/11/2024 10:48	12/22/2023 12:00
23122012-009A		NELAP	0.00		mg/L	1	01/11/2024 10:52	12/22/2023 12:00
23122012-010A		NELAP	0.00		mg/L	1	01/11/2024 10:56	12/22/2023 12:00
23122012-010A		NELAP	0.00		mg/L	1	01/11/2024 10:00	12/22/2023 12:00
23122012-011A		NELAP	0.00		mg/L	1	01/11/2024 11:04	12/22/2023 12:00
23122012-012A		NELAP	0.00		mg/L	1	01/11/2024 11:08	12/22/2023 12:00
23122012-013A 23122012-014A		NELAP	0.00		mg/L	1	01/11/2024 11:16	12/22/2023 12:00
23122012-014A 23122012-015A		NELAP	0.00		mg/L	1	01/11/2024 11:10	12/22/2023 12:00
23122012-016A		NELAP	0.00		mg/L	1	01/11/2024 11:41	12/22/2023 12:00
23122012-010A 23122012-017A		NELAP	0.00		mg/L	1	01/11/2024 11:45	12/22/2023 12:00
23122012-017A 23122012-018A		NELAP	0.00		mg/L	1	01/11/2024 11:49	12/22/2023 12:00
23122012-018A 23122012-019A		NELAP	0.00		mg/L	1	01/11/2024 11:53	12/22/2023 12:00
23122012-019A 23122012-020A		NELAP	0.00		mg/L	1	01/11/2024 11:58	12/22/2023 12:00
23122012-020A 23122012-021A		NELAP	0.00		mg/L	1	01/11/2024 11:38	12/22/2023 12:00
23122012-021A 23122012-022A		NELAP	0.00		mg/L	1	01/11/2024 12:06	12/22/2023 12:00
23122012-022A 23122012-023A		NELAP	0.00		mg/L	1	01/11/2024 12:10	12/22/2023 12:00
23122012-023A 23122012-024A		NELAP	0.00		mg/L	1	01/11/2024 12:10	12/22/2023 12:00
23122012-024A 23122012-025A		NELAP	0.00		mg/L	1	01/11/2024 12:39	12/22/2023 12:00
23122012-025A 23122012-026A		NELAP	0.00		mg/L	1	01/11/2024 12:39	12/22/2023 12:00
23122012-020A 23122012-027A		NELAP	0.00		mg/L	1	01/11/2024 12:47	12/22/2023 12:00
23122012-027A 23122012-028A		NELAP	0.00		mg/L	1	01/11/2024 12:47	12/22/2023 12:00
23122012-028A 23122012-029A		NELAP	0.00		_	1	01/12/2024 0:17	12/22/2023 12:00
23122012-029A 23122012-030A		NELAP	0.00		mg/L	1	01/12/2024 0:21	12/22/2023 12:00
23122012-030A 23122012-031A			0.00		mg/L	1	01/12/2024 0:23	12/22/2023 12:00
23122012-031A 23122012-032A		NELAP NELAD			mg/L		01/12/2024 0:30	12/22/2023 12:00
23122012-032A 23122012-033A		NELAP NELAP	0.00		mg/L mg/l	1 1	01/12/2024 0:34	12/22/2023 12:00
		NELAP NELAD	0.00		mg/L			
23122012-034A 23122012-035A		NELAP NELAD	0.00		mg/L	1	01/12/2024 0:46 01/12/2024 0:42	12/22/2023 12:00
		NELAP NELAD	0.00		mg/L	1		12/22/2023 12:00
23122012-036A		NELAP	0.00		mg/L	1	01/12/2024 1:11	12/22/2023 12:00
23122012-037A 23122012-038A		NELAP	0.00		mg/L	1	01/12/2024 1:15	12/22/2023 12:00
		NELAP	0.00		mg/L	1	01/12/2024 1:19	12/22/2023 12:00
23122012-039A		NELAP	0.00		mg/L	1	01/12/2024 1:23	12/22/2023 12:00
23122012-040A	80-B	NELAP	0.00	0 < 0.0010	mg/L	1	01/12/2024 1:27	12/22/2023 12:00

Quality Control Results

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

	SampType:	MBLK	U	nits mg/L							
SamplD: MBLK-216	724										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010		< 0.0010	0.0002	0	0	-100	100	01/10/202
Batch 216724 SampID: LCS-21672	SampType:	LCS	U	nits mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010		0.0535	0.0500	0	106.9	85	115	01/10/202
Batch 216724 SampID: 23122012-0	SampType: 014AMS	MS	U	nits mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010	Е	0.126	0.1000	0.0007195	125.4	70	130	01/11/202
Batch 216724	SampType:	MSD	U	nits mg/L					RPD Lir	mit: 20	
SamplD: 23122012-0 Analyses	014AMSD	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Lead			0.0010	E	0.127	0.1000	0.0007195	126.6	0.1262	0.87	01/11/202
Batch 216724 SampID: 23122012-0	SampType: 023AMS	MS	U	nits mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010	E	0.130	0.1000	0.0003745	129.6	70	130	01/11/202
Batch 216724 SampID: 23122012-0	SampType:	MSD	U	nits mg/L					RPD Lir	mit: 20	_
Analyses	JZO/ (IVIOD	Cert	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Date Analyzed
Lead		CCIT	0.0010	E	0.128	0.1000	0.0003745	127.3	0.1299	1.74	01/11/202
Batch 216725 SampID: MBLK-216	SampType:	MBLK	U	nits mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010	_	< 0.0010	0.0002	0	0	-100	100	01/05/202
	SampType:	LCS	U	nits mg/L							
Batch ²¹⁶⁷²⁵ SampID: LCS-21672							SPK Ref Val		Low Limit	High Limit	Date Analyzed

Quality Control Results

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

Batch 216725 Sam	рТуре:	MS	L	Inits mg/L							
SampID: 23122010-056AN	1S										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010		0.0925	0.1000	0.0002957	92.2	70	130	01/10/2024
Batch 216725 Sam	рТуре:	MSD	L	Inits mg/L					RPD Lir	nit: 20	
SampID: 23122010-056AM	ISD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Lead			0.0010		0.0854	0.1000	0.0002957	85.1	0.09254	7.97	01/10/2024
2 41011	рТуре:	MS	L	Inits mg/L							
SampID: 23122012-003AN	1S										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0010		0.0985	0.1000	0.0003559	98.1	70	130	01/10/2024
Dutti	рТуре:	MSD	L	Inits mg/L					RPD Lir	mit: 20	
SampID: 23122012-003AN	ISD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Lead			0.0010		0.0978	0.1000	0.0003559	97.4	0.09845	0.67	01/10/2024
2	рТуре:	MBLK	L	Inits mg/L							
SampID: MBLK-216728											Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	<u> </u>
Lead			0.0010		< 0.0010	0.0002	0	0	-100	100	01/11/2024
2	рТуре:	LCS	L	Inits mg/L							
SampID: LCS-216728		_					00140 4341	0/050	1 12 %	10 1 11 2	Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val		Low Limit	High Limit	
Lead			0.0010		0.0527	0.0500	0	105.4	85	115	01/11/2024
Batch 216728 Sam SampID: 23122012-034AN	pType:	MS	L	Inits mg/L							Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		2011	0.0010	E	0.116	0.1000	0.0002596	115.8	70	130	01/12/2024
Batch 216728 Sam	рТуре:	MSD	L	Inits mg/L					RPD Lir	mit: 20	
SampID: 23122012-034AN	ISD										Date
Amalagas		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
Analyses											

Quality Control Results

http://www.teklabinc.com/

Client: Triangle Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24

EPA 600 4.1.4, 200.8 R5.4, METALS BY ICPMS (TOTAL)
--

Batch 216728 SampType: MS Units mg/L

SampID: 23122018-002AMS

Date Analyzed SPK Ref Val %REC Low Limit High Limit Cert RL Qual Result Spike Lead 0.0010 Е 0.118 0.1000 0.001451 116.4 70 130 01/12/2024

Units mg/L RPD Limit: 20 Batch 216728 SampType: SampID: 23122018-002AMSD Date Analyzed SPK Ref Val %REC RPD Ref Val %RPD Analyses Cert RL Qual Result Spike Lead 0.0010 Ε 0.119 0.1000 0.001451 01/12/2024 117.8 0.1179 1.16

Client: Triangle

Receiving Check List

http://www.teklabinc.com/

Work Order: 23122012

Client Project: RPS-Wyman Elementary Report Date: 12-Jan-24 Carrier: John Cable Received By: LEH Completed by: Reviewed by: Mary E. Kemp On: On: 28-Dec-23 28-Dec-23 Mary E Kemp Ellie Hopkins Extra pages included 4 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes **✓** No 🗔 Not Present Temp °C NA Type of thermal preservation? **V** Ice _ Blue Ice None Dry Ice Chain of custody present? **~** No 🗌 Yes Chain of custody signed when relinquished and received? **~** Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** No \square Samples in proper container/bottle? Yes **V** No 🗌 Sample containers intact? Yes Sufficient sample volume for indicated test? Yes **~** No **~** No \square All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗸 No \square Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. No VOA vials ✓ Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt? Yes NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? No 🗀 Any No responses must be detailed below or on the COC.

Samples were checked for turbidity and then preserved with nitric acid upon arrival in the laboratory.

Print PDF

CHAIN OF CUSTODY

2312012 Pg 1 of 1 Workorder # 2312196 TE 12128123 MEK

TEKLAB INC, 5445 Horseshoe Lake Road, Collinsville, IL 62234 Phone (618) 344-1004 Fax (618) 344-1005 Client TRIANGLE ENVIRONMENTAL SCIENCE AND ENGINEERING NOICE NA °C BLUEICE Samples on: ICE Address: PO BOX 1026 FOR LAB USE ONLY FELD Preserved in: LAB City/State/Zip: ROLLA, MO 65402 LAB NOTES: Contact: JOHN CABLE Phone: 573 308 0140 Fax: @GMAIL.COM TRIANGLE.ENVIRONMENTAL Client Comments: Email: Are these samples known to be involved in litigation? If yes, a surcharge will apply: **7** Are these samples known to be hazardous? No Are there any required reporting limits to be met on the requested analysis?. If yes, please provide Yes V No limits in the comment section: PROJECT NAME/NUMBER SAMPLE COLLECTOR'S NAME # and Type of Containers INDICATE ANALYSIS REQUESTED YMan Elementerry JOHN W CABLE NaHSO4 MeOH HCL H2SO4 NaOH HNO3 **RESULTS REQUESTED BILLING INSTRUCTIONS** Other TSP TRIANGLE Standard 1-2 Day (100% Surcharge) Other 3 Day (50% Surcharge) Lab Use Only Sample ID Date/Time Sampled Matrix Drinking Water Drinking Water Drinking Water Drinking Water **Drinking Water** Drinking Water Drinking Water Drinking Water Drinking Water Drinking Water Drinking Water Relinquished By Date/Time Received By Date/Time JOHN W CABLE 12/27/27 1420

^{*}The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions

48	3-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
48	3-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
49	9-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
49	9-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
50)-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
50)-B	DRINKING WATER		12/22/23 @ 1200			
51	l-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
51	L-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
52	<u>2</u> -A	DRINKING WATER	LEAD	12/22/23 @ 1200			
	2-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
53	3-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
53	3-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
	l-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
54	I-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
	5-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
56	5-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
	5-В	DRINKING WATER	LEAD	12/22/23 @ 1200			
	'-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
	′-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
	S-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
58	3-В	DRINKING WATER	LEAD	12/22/23 @ 1200			
59)-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
)-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
)-A	DRINKING WATER	LEAD	12/22/23 @ 1200			
60)-B	DRINKING WATER	LEAD	12/22/23 @ 1200			
61	A	DRINKING WATER	LEAD	12/22/23 @ 1200	2312	2012 -001	
61	-В	DRINKING WATER	LEAD	12/22/23 @ 1200	ŧ	60G	
62	-A	DRINKING WATER	LEAD	12/22/23 @ 1200	1	003	
62	-B	DRINKING WATER	LEAD	12/22/23 @ 1200	1	604	
63	-A	DRINKING WATER	LEAD	12/22/23 @ 1200	ļ	005	
63	-В	DRINKING WATER	LEAD	12/22/23 @ 1200		000	
64	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		607	
64	-B	DRINKING WATER	LEAD	12/22/23 @ 1200		००४	
65	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		009	
65	-B	DRINKING WATER	LEAD	12/22/23 @ 1200		010	
66	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		011	
66	-В	DRINKING WATER	LEAD	12/22/23 @ 1200		610	
67	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		013	
67	-B	DRINKING WATER	LEAD	12/22/23 @ 1200		014	
68	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		015	
68	-В	DRINKING WATER	LEAD	12/22/23 @ 1200		010	
69	-A	DRINKING WATER	LEAD	12/22/23 @ 1200	į	07	
69	-В	DRINKING WATER	LEAD	12/22/23 @ 1200		018	
70	-A	DRINKING WATER	LEAD	12/22/23 @ 1200		019	
70		DRINKING WATER	LEAD	12/22/23 @ 1200		030	
71		DRINKING WATER	LEAD	12/22/23 @ 1200		021	
71	-B	DRINKING WATER	LEAD	12/22/23 @ 1200	j	^ 0 3 9	

ŧ

72-A	DRINKING WATER	LEAD	12/22/23 @ 1200	53139012-033
72-B	DRINKING WATER	LEAD	12/22/23 @ 1200	, 024
73-A	DRINKING WATER	LEAD	12/22/23 @ 1200	025
73-B	DRINKING WATER	LEAD	12/22/23 @ 1200	026
74-A	DRINKING WATER	LEAD	12/22/23 @ 1200	027
74-B	DRINKING WATER	LEAD	12/22/23 @ 1200	028
75-A	DRINKING WATER	LEAD	12/22/23 @ 1200	029
75-B	DRINKING WATER	LEAD	12/22/23 @ 1200	030
76-A	DRINKING WATER	LEAD	12/22/23 @ 1200	031
76-B	DRINKING WATER	LEAD	12/22/23 @ 1200	032
77-A	DRINKING WATER	LEAD	12/22/23 @ 1200	033
77-B	DRINKING WATER	LEAD	12/22/23 @ 1200	034
78-A	DRINKING WATER	LEAD	12/22/23 @ 1200	035
78-B	DRINKING WATER	LEAD	12/22/23 @ 1200	036
79-A	DRINKING WATER	LEAD	12/22/23 @ 1200	037
79-B	DRINKING WATER	LEAD	12/22/23 @ 1200	038
80-A	DRINKING WATER	LEAD	12/22/23 @ 1200	039
80-B	DRINKING WATER	LEAD	12/22/23 @ 1200	040
81-A	DRINKING WATER	LEAD	12/22/23 @ 1200	· ·
81-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
82-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
82-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
83-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
83-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
84-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
84-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
85-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
85-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
86-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
86-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
87-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
87-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
88-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
88-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
89-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
89-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
90-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
90-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
91-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
91-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
92-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
92-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
93-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
93-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
94-A	DRINKING WATER	LEAD	12/22/23 @ 1200	
94-B	DRINKING WATER	LEAD	12/22/23 @ 1200	
95-A	DRINKING WATER	LEAD	12/22/23 @ 1200	

7 m

95-B	DRINKING WATER	LEAD	12/22/23 @ 1200
96-A	DRINKING WATER	LEAD	12/22/23 @ 1200
96-B	DRINKING WATER	LEAD	12/22/23 @ 1200
97-A	DRINKING WATER	LEAD	12/22/23 @ 1200
97-B	DRINKING WATER	LEAD	12/22/23 @ 1200
98-A	DRINKING WATER	LEAD	12/22/23 @ 1200
98-B	DRINKING WATER	LEAD	12/22/23 @ 1200
99-A	DRINKING WATER	LEAD	12/22/23 @ 1200
99-B	DRINKING WATER	LEAD	12/22/23 @ 1200
100-A	DRINKING WATER	LEAD	12/22/23 @ 1200
100-B	DRINKING WATER	LEAD	12/22/23 @ 1200
101-A	DRINKING WATER	LEAD	12/22/23 @ 1200
101-B	DRINKING WATER	LEAD	12/22/23 @ 1200
102-A	DRINKING WATER	LEAD	12/22/23 @ 1200
102-B	DRINKING WATER	LEAD	12/22/23 @ 1200
103-A	DRINKING WATER	LEAD	12/22/23 @ 1200
103-B	DRINKING WATER	LEAD	12/22/23 @ 1200
104-A	DRINKING WATER	LEAD	12/22/23 @ 1200
104-B	DRINKING WATER	LEAD	12/22/23 @ 1200
105-A	DRINKING WATER	LEAD	12/22/23 @ 1200
105-B	DRINKING WATER	LEAD	12/22/23 @ 1200
106-A	DRINKING WATER	LEAD	12/22/23 @ 1200
106-B	DRINKING WATER	LEAD	12/22/23 @ 1200
107-A	DRINKING WATER	LEAD	12/22/23 @ 1200
107-B	DRINKING WATER	LEAD	12/22/23 @ 1200
108-A	DRINKING WATER	LEAD	12/22/23 @ 1200
108-B	DRINKING WATER	LEAD	12/22/23 @ 1200
109-A	DRINKING WATER	LEAD	12/22/23 @ 1200
109-B	DRINKING WATER	LEAD	12/22/23 @ 1200
110-A	DRINKING WATER	LEAD	12/22/23 @ 1200
110-B		LEAD	12/22/23 @ 1200
111-A	DRINKING WATER	LEAD	12/22/23 @ 1200
111-B	DRINKING WATER	LEAD	12/22/23 @ 1200
112-A	DRINKING WATER	LEAD	12/22/23 @ 1200
112-B	DRINKING WATER	LEAD	12/22/23 @ 1200
113-A	DRINKING WATER	LEAD	12/22/23 @ 1200
113-B	DRINKING WATER	LEAD	12/22/23 @ 1200
114-A	DRINKING WATER	LEAD	12/22/23 @ 1200
114-B	DRINKING WATER	LEAD	12/22/23 @ 1200
115-A	DRINKING WATER	LEAD	12/22/23 @ 1200
115-B	DRINKING WATER	LEAD	12/22/23 @ 1200
116-A	DRINKING WATER	LEAD	12/22/23 @ 1200
116-A	DRINKING WATER	LEAD	12/22/23 @ 1200
110-D 117-A	DRINKING WATER	LEAD	12/22/23 @ 1200
117-B	DRINKING WATER	LEAD	12/22/23 @ 1200
117-D	DRINKING WATER	LEAD	12/22/23 @ 1200
118-B	DRINKING WATER	LEAD	12/22/23 @ 1200
TTO-0	DIMMINIA ANNIEU	にこべい	12/22/23 @ 1200

119-A	DRINKING WATER	LEAD	12/22/23 @ 1200
119-B	DRINKING WATER	LEAD	12/22/23 @ 1200
120-A	DRINKING WATER	LEAD	12/22/23 @ 1200
120-B	DRINKING WATER	LEAD	12/22/23 @ 1200
121-A	DRINKING WATER	LEAD	12/22/23 @ 1200
121-B	DRINKING WATER	LEAD	12/22/23 @ 1200
122-A	DRINKING WATER	LEAD	12/22/23 @ 1200
122-B	DRINKING WATER	LEAD	12/22/23 @ 1200
123-A	DRINKING WATER	LEAD	12/22/23 @ 1200
123-B	DRINKING WATER	LEAD	12/22/23 @ 1200
124-A	DRINKING WATER	LEAD	12/22/23 @ 1200
124-B	DRINKING WATER	LEAD	12/22/23 @ 1200
125-A	DRINKING WATER	LEAD	12/22/23 @ 1200
125-B	DRINKING WATER	LEAD	12/22/23 @ 1200